Elgar TerraSAS

1kW-1MW

Programmable Solar Array Simulator

80-600 V

- Full turn-key solution
- Simulate dynamic irradiance and temperature ranging from a clear day to cloud cover conditions
- Readback of voltage, current, irradiance level and temperature setting
- Tests for inverter Maximum Power Point Tracking
- Provides programmable I-V curves for PV Inverter

Many solar inverters generate AC ripple on their

array. For single phase inverters, the frequency

of this ripple is twice the line frequency (120 Hz

for US models). The simulator's power supplies

must not supress this ripple as a function of

their regulation loop. An increasing number

of inverters (and virtually all micro-inverters)

accurately measure amplitude and phase of the

MPP of the array. This approach allows tracking

the MPP at a much higher speed when compared

to conventional dithering techniques (also called

perturbate-and-observe). Faster tracking of the

MPP results in a much higher overall efficiency in cloudy conditions, where the irradiance is

inverters will use this approach in the near future,

To satisfy this requirement, the PV simulator must

be capable of reproducing the voltage / current

behavior of a solar array at the ripple frequency.

Most standard switching power supplies employ

their output circuits and are unable to deliver the

required performance - regardless of the response

very large output capacitors and inductors in

Elgar's line of PV simulators are based on high

output capacitors and other speed-limiting

components have been adjusted. This results

in a speed improvement of 10 times or better.

Proprietary features built into the PV controller

performance. This technology was extensively tested on micro-inverters and is ready to test the

hardware and firmware, combined with our high speed power supplies, deliver the required

speed versions of our standard products, where

speed of the I/V curve controller.

next generation of inverters.

since end users are very sensitive to the overall

constantly changing. It is likely that all solar

efficiency of their solar energy installations.

ripple voltage and current to quickly track the

DC input, which is connected to the photovoltaic

- Simulates different types of solar cell material
- Multi-Channel, Up to 1MW

What part of power is important?

Strengths of using DSP signal processing Our technology avoids using linear amplifiers, which are fast but bulky and inefficient. The required performance is delivered by high speed switching power supplies and advanced DSP signal processing techniques. In some conditions traditional DC power sources using IGBT technology do not meet MPPT response speed requirements, depending on the MPPT principles. Our power supplies use Power MOSFETs, which typically switch ten times as fast as the most recent IGBTs. Higher switching frequency translates to smaller output capacitors and inductors - which is the key to a successful high speed power supply design.

The Elgar TerraSAS System, provides an easily programmable means of simulating the characteristic behavior of a PV array. The system provides a turn-key approach to testing the maximum peak power tracking (MPPT) characteristics for grid-tied inverters and DC charge controllers. The ability to simulate virtually any fill factor or solar cell material allows the customer to validate the MPPT algorithm with a power source. Hardware control is accomplished by an application running on the local controller that communicates directly to the PV simulator using RS422, which operate as a dedicated IV curve generation processor. The local Graphical User Interface (GUI) is accomplished via another application that provides all of the user controls to the TerraSAS system. Imbedded in the application is the Ethernet (LAN) parser for remote communication and control. All of the functions available locally through the controller are also available remotely.

 \approx 115 208 400 480

Product Overview

AMETEK

USA

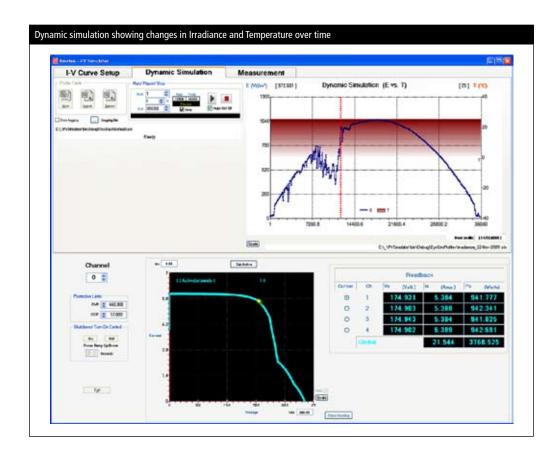
Programmable Power

9250 Brown Deer Road

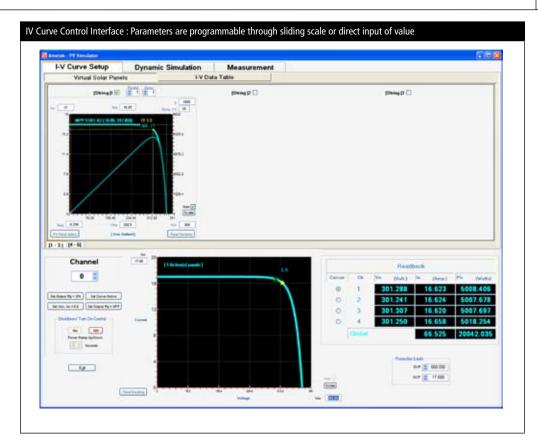
San Diego, CA 92121-2267

Elgar TerraSAS

Description


As shown in the image, the TerraSAS consists of programmable DC power supplies, a rack mounted controller, keyboard and LCD display with control software and GUI interface, output isolation and polarity reversing relays and a unique PV simulation engine that controls the power supplies. This combination of hardware allows the TerraSAS to simulate test protocols or combination of events that a solar installation will be subjected to. Power supplies are available in 1-15KW increments to simulate arrays up to 1MW.

The included software, as displayed below, allows modeling of a PV panel without an extensive knowledge of solar array parameters. The only parameters required for a simulation are the open circuit voltage and short circuit current. The slope of the VI curve can then be modified by the peak power parameters, Vmpp and Impp. Changes to these parameters will allow the shape of the VI curve to be adapted to any fill factor between 0.5 and 1. Once an IV curve has been generated, changes to the irradiation level or temperature can be modified on the fly so that the behavior of a grid tied inverter can be tested under realistic


conditions for cloud shadowing and panel temperature rise. Long term weather simulations can be run to determine the amount of energy delivered in a given situation. Inverters can be optimized for real MPP search modes, because shadowing and temperature changes can be simulated realistically.

The PV simulation software allows definition of key parameters like Voc, lsc, Vmpp and lsc at 25 °C and 1000W/m, so that the resulting VI curve is calculated according to a standard solar cell model.

The PV simulator has the ability to simulate ideal IV curves as well as irregular characteristics for peak power tracking that result when solar panels with different output characteristics are paralleled as shown on the following two graphs below. With the simulator programmed for different values of irradiance or temperature, the characteristic "multiple hump" IV curve will result. By programming the changes in irradiance and temperature in a table, dynamic simulation of compressed time profiles of a 24 hour day can be run in a loop to simulate the day and night periods for extended periods of time.

TerraSAS

Control Displays

The graphic above shows the GUI interface displays. The entered set of IV curves is displayed as soon as the parameters are entered. The actual measured data is then overlaid on the screen so that the operating point can be viewed in real time. The display times can be set from minutes to days to allow for long term testing.

Programmable Parameters

Set a specified irradiance level
Set a specified temperature value
Set a specified voltage level
Set a specified current level
Set a specified temperature coefficient

Ramp of voltage, temperature or irradiance level over a programmed time interval Readback of voltage, current, irradiance level, and temperature setting.

Curve Formula

The PV curves for the simulator are derived from the formula shown below.

lo as a function of Vo: lo=lsc (1-C1 (exp (V/(C2 x Voc))-1)) C1=(1-(Imp/lsc)) (exp(-Vmp/(C2 x Voc))) C2=((Vmp/Voc)-1)/(In(1-Imp/lsc))

where the Reference Irradiance condition for the simulated arrays is 1000W/m and the Reference Array Temperature is 25°C

The simulated PV arrays are provided in terms of array fill factor, Maximum Power Point Voltage and Maximum Power Point Power. The curves generated are based on the Sandia Labs simplified PV Array model defining the relationship between these values and other parameters as provided below:

Where:

$$\begin{split} \mathbf{P} &= \mathbf{P}ref \times \frac{Irr}{Irref} \times \left(1 + \frac{\beta}{100} \times (T - Tref)\right) \\ V &= Vref \times \frac{\ln Irr}{\ln Irref} \times \left(1 + \frac{\beta}{100} \times (T - Tref)\right) \\ \mathbf{P} &= V \times I \\ FF &= \frac{Vmp \times Imp}{Vee \times Ire} \end{split}$$

Where:

 β Array temperature Coefficient, %/°C

T= Cell temperature, °C

V= Voltage, V

I= Current, A

FF= Fill Factor

Subscripts:

Ref= Reference (i.e., at reference or rated conditions)

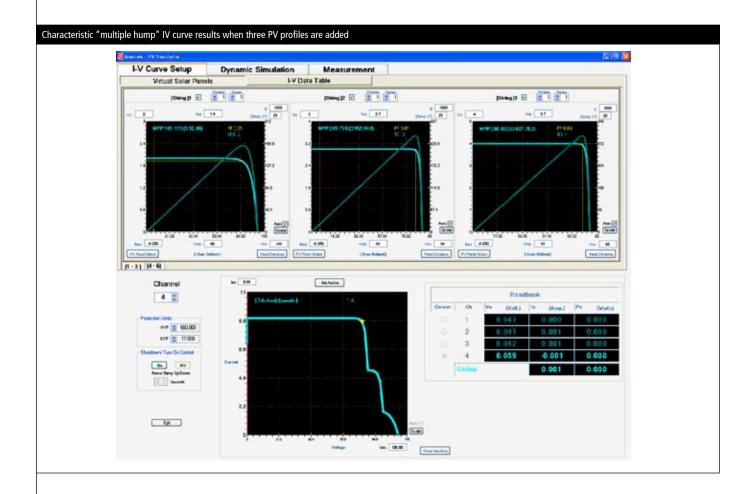
MP= Maximum Power

OC= Open Circuit

SC= Short Circuit

DC Output Connections

The output connections will use finger safe, pressure type connectors or terminal blocks of suitable ampacity on the rear I/O panel depending on output current requirements.

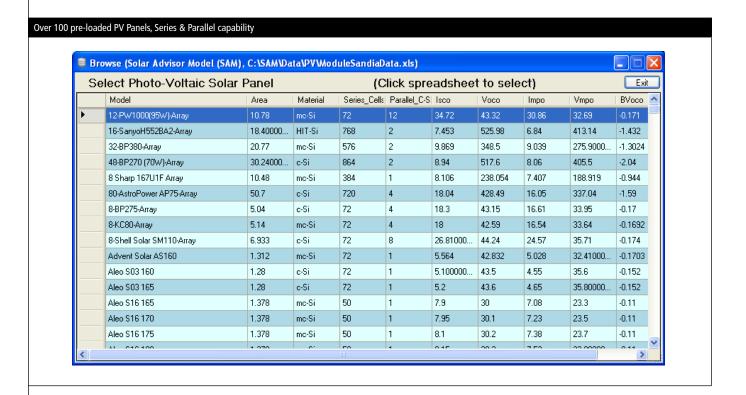

"Multiple Hump" IV Curve

Utilizing data gathered from the Solar Advisor Model (SAM) data base, the TerraSAS allows the user to model systems made up of two or more subsystems. For example, a PV system that consists of three arrays with different orientations, thus creating a "Multiple Hump" as shown below.

Safety

The system includes a shutdown function that will disable the output with an open interlock contact. In the event of an open interlock, the PV simulator chassis will program down the DC output and open the output relays, and provides complete qalvanic isolation

The benefit of simulators is that they offer the ability to test an inverter without reliance on a real array and can simulate PV behaviors that a real array cannot be easily manipulated to do.



TerraSAS - Specifications

Specifications								
AC Power		AC Input Voltage: 115V (for DCS) 208VAC three phase Std, 400VAC and 480VAC three phase are optional (Input current depends on power rating)						
DC Output	Short circuit cu Maximum outp	Open circuit voltage, Voc: 0 - 600VDC Short circuit current, Isc: 0 – 1000A Maximum output power at MPP: 1MW (Lower voltage ranges will provide proportionately higher currents) 1-6 channel output, consult factory for additional channels.						
Programmable Parameters	Temperature: -4 Temperature Co Simulation Time	Irradiance level: 0 to 2000 W/m² Temperature: -40 to 90°C Temperature Coefficient: 0 to -65,000 mV/°C Simulation Times: 0 to 65,000 seconds Isolation relay and polarity relay closure						
Accuracy		Voltage Readback: 0.2% of rated max voltage Current Readback: 0.5% of max current						
Programming Interface	Ethernet with R	Ethernet with RJ-45 connector / LAN						
AC Input Connections	Finger safe, pre	Finger safe, pressure type connectors three phase AC four wire plus safety ground stud AC input circuit breaker						
DC Output Connections	Finger safe, pre	Finger safe, pressure type connectors positive and negative						
Safety	The output isol	The output isolation relay operates as a disconnect relay in the event of a malfunction or an open interlock contact						
Output Voltage and Current Ran	iges							
Power	1 kW	5 kW	10 kW	15 kW	RMS	P-P	DC Leakage Current	
Voc								
80V	Isc=12.5	lsc=83A	Isc=167A	lsc=250A	20 mV	100 mV		
600Voc	lsc=1.6A	Isc=8A	Isc=16A	Isc=25A	60 mV	350 mV	335mA	
MMPT								
Scalable (MPPT)	1000W to 1.0M	1000W to 1.0MW						
Response to MPPT	Up to 120Hz	Up to 120Hz						
Current Slew Rate	3msec/A	<u>'</u>						
Control Loop Sampling Rate	1usec / 10kHz							
Static and Dynamic Programmal	ble PV Array Par	ameters						
Irradiance Level	0-2,000W/m2	0-2,000W/m2						
Temperature	-100 to +100*	-100 to +100*C						
Voltage Level	80V, 0-600 - Co	80V, 0-600 - Consult factory for other voltages						
Current level to rated output current	0-Rated Output	0-Rated Output (see MPP Chart)						
Voltage Temperature Coefficient	0 to -2% / *C	0 to -2% / *C						
Arbitrary VI Curve	Up to 4096 dat	Up to 4096 data points						
Programmable Setpoints								
Voc	0-Rated outp	0-Rated output voltage						
Fill Factor	0.5 to 0.95	0.5 to 0.95						
Vmp	0-Voc	0-Voc						
Imp	0-lsc	0-lsc						
ISC	0-Rated output	0-Rated output current						
Over Voltage Protection (OVP)	0.1% to 110%	0.1% to 110% of Voc Max						
VI Curve Set Point Accuracy								
Voltage	<0.1%, FS	<0.1%, FS						
Current	<0.5%, FS	<0.5%, FS						
Programming Resolution								
Programming Resolution	<0.002% of F	<0.002% of FS						
Voltage / Current	<0.002% of FS	<0.002% of FS						

TerraSAS 1kW-1MW

VI Curve Readback Accuracy			
Voltage	<0.1%, FS		
Current	<0.5%, FS		
Output Sampling Rate	100usec		
IV Curve Update Rate	1sec		
IV Curve Interpolation rate	7.8msec		
Stability			
СС	0.05		
Temperature Coefficient			
СС	0.03		
Misc			
Simulation PV Array Channels	1-250		
Preloaded Formula	LUFT		
SAM Database	Over 100 pre-loaded PV Panels, Series & Parallel capability		

